Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Nat Prod ; 84(8): 2385-2389, 2021 08 27.
Article in English | MEDLINE | ID: covidwho-1634670

ABSTRACT

The ongoing COVID-19 global pandemic caused by SARS-CoV-2 inspires the development of effective inhibitors to block the SARS-CoV-2 spike-ACE2 interaction. A chemical investigation on the fruiting bodies of Phellinus pini led to the isolation of five aromatic cadinane sesquiterpenoids including four new ones, named piniterpenoids A-D (1-4), as well as three known lignans. Their structures were determined by extensive spectroscopic analysis including HRMS and 1D and 2D NMR. All of the aromatic cadinane sesquiterpenoids inhibited the SARS-CoV-2 spike-ACE2 interaction, with IC50 values ranging from 64.5 to 99.1 µM. A molecular docking study showed the disruption of the interaction of compound 1 via hydrogen interactions with Arg403, Asp405, and Arg408 of SARS-CoV-2 RBD and Arg393 and His34 residues of ACE2. These results suggested that aromatic cadinane sesquiterpenoids might be useful in developing agents for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Fruiting Bodies, Fungal/chemistry , Phellinus/chemistry , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology , SARS-CoV-2/drug effects , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Humans , Hydrogen Bonding/drug effects , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL